Chapter 17

Dynamic Flow-of-Funds Networks

Sten Thore, The Norwegian School of Economics and Business Administration and Finn Kydland, Carnegie-Mellon University

When the notion of a credit network was first suggested in the literature [12], the general idea was to incorporate the process of multiple bank credit expansion—the credit multiplier—in the format of mathematical programming of networks. Thus contact was established between one of the oldest areas of economic research and one of the most modern techniques of mathematical programming. A first result, which became immediately apparent, suggested that it was now possible to abandon the assumption of fixed asset-preference ratios of traditional multiplier formulas and to replace them by optimising behaviour at the nodes of the financial intermediaries [14]. The multiplier itself became part and parcel of the optimal solution of the network.

Inherent in these original developments was an ambivalence between the decentralised decision-making of banks (and other financial intermediaries) and the global optimisation procedures of network theory. These aspects of the problem were brought into the open in a recent study [13], where it was shown that the network problem in hand is actually a case of decomposition theory. There is one ‘division’ (to make decentralised decisions) for each node of the network; in addition there are ‘couplings’ between the nodes as defined by the Kirchhoff conditions. The problem of decentralisation is to find prices of capital instruments—and any other information which may be required—which when delegated down to divisions would cause them to select individual portfolios which would coincide with the solution to the global problem.

Just as the ordinary textbook credit multiplier exists in two versions, one static and one dynamic, it should be possible to exploit the idea of a flows-of-funds network both in a static context and in a dynamic context.
In the common presentation the dynamic element in the dynamic credit multiplier is a behaviour lag of the private (non-bank) sector. The private sector borrows money from the banks in one period; a certain fraction thereof leaves the system as 'leakage' (desired cash holdings with the private sector) and the remainder is then redeposited with the banks. A dynamic sequence of such 'rounds' is set up. The total amount of lending is obtained as a geometric series. It converges if the fraction of total leakage in each round is less than unity. In equilibrium, actual reserves of banks are equal to desired reserves.

Similarly, assume that a lag of behaviour for the private sector is introduced into the flow-of-funds network. Funds flow into this sector in one period; after a certain fraction thereof has left the system as cash leakage, the remainder is fed back into the intermediaries in an ensuing time period. Again, a dynamic sequence of 'rounds' is set up. A dynamic credit network or a dynamic flow-of-funds network is then defined.

As the funds are being propagated through the network each financial intermediary will adjust its portfolio in a decentralised setting. Will the timepath of these decisions be convergent?

From a methodological point of view our work can be seen as an attempt to evolve a concept of dynamic portfolio process analysis. The idea of monetary process analysis has a long history in economic theory and is usually formalised in terms of difference equations and in \textit{ex ante–ex post} language. In each single period of analysis we shall decompose the flow-of-funds network into a hierarchical chain of successive portfolio optimisations\(^1\).

17-1 Flow-of-Funds as a Network

The flow-of-funds table is a matrix arrangement showing a cross-tabulation of sources of funds and the uses of funds in an economy. We shall here demonstrate variation of such a display featuring explicitly the financial intermediaries via which the funds are channelled before they reach their ultimate destinations.

Consider the simple network shown in Figure 17:1. The sources of funds and their uses of funds are introduced in the usual fashion [3]. In the simple prototypical economy of this example there are two sectors of ultimate units: households and business sector. The sources of funds are the financial saving of households and the financial saving of the business sector. There are four forms of uses of funds the ultimate units: holding of cash, household loans, business loans and real estate loans.

The novelty, if any, in the network arrangement in Figure 17:1 is the explicit introduction of the financial intermediaries [7]. Three bodies of financial

\(^1\) General dynamic portfolio process analysis must of course include the dynamic formation of interest rates and of prices on financial market paper. This feature will not be demonstrated here; interest rates are supposed fixed and given throughout.
intermediaries are shown:

CB: commercial banks
SL: savings and loan associations, insurance companies
HF: household financing institutions

The intermediaries are depicted as nodes in the network; the links show the channelling of funds between the nodes. All links are directed (i.e. they show the direction of funds from the raising of funds to the placements of funds.) The influx into the network is identified as the sources of funds at the top of the figure; the flows enter the network, propagate via the intermediaries, and finally leave the network via the efflux channels (i.e. the uses of funds). Note that total influx = total efflux. The following links are shown in Figure 17:1:

1. **Placements of ultimate sectors**: cash, deposits with commercial banks, shares in savings and loan associations (ownership of accrued reserves in insurance companies)
2. **Placements of savings and loan associations**: demand deposits with commercial banks, real estate loans

3. **Placements of commercial banks**: reserves with the central bank, term loans to household finance companies, business loans

4. **Placements of household finance companies**: cash, household loans

The network arrangement can be interpreted as a double-entry book-keeping accounting system: each node represents a balance sheet and the links indicate individual entries in the balance sheets. Each link is entered as a credit (on the asset side) of the balance sheet of the originating node, and is entered as a debit (on the liabilities side) of the balance sheet of the destination node. The well-known Kirchhoff's law must hold: the sum of all flows arriving into a node must equal the sum of all flows leaving the node. In other words: the balance sheet of flows at each node must balance.

A well-known mathematical representation of all Kirchhoff conditions is shown in Figure 17:2. The totality of Kirchhoff conditions has the form of a system of linear equations. For each node there is one Kirchhoff equation, the left side of which consists of a sum of flows into the node and the right side consists of a sum of flows out of the node. The system of equations for each node is as follows:

<table>
<thead>
<tr>
<th>Links (placements of...)</th>
<th>...ultimate sectors</th>
<th>...savings and loan associations</th>
<th>...commercial banks</th>
<th>...household finance companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank deposits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shares in savings and loan associations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank deposits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real estate loans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term loans to household finance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business loans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Household loans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Sources of funds**:
 - 1 - 1 - 1

- **Savings and loan associations**:
 + 1 - 1 - 1 = 0

- **Commercial banks**:
 + 1 + 1 - 1 - 1 - 1 = 0

- **Household finance**:
 + 1 - 1 - 1 = 0

- **Uses of funds**:
 + 1 + 1 + 1 + 1 + 1 + 1 = + efflux

Figure 17:2 Kirchhoff conditions—expressing book-keeping identities
which is presented in matrix form, with the variables (the links) on the top and the coefficients as entries in the matrix. The coefficient matrix can be recognised as the so called incidence matrix, which contains one row for each node and one column for each link in the network. The coefficients are entered as follows: for each link (each column) —1 is entered for the origin node of the link, and +1 is entered for the destination node of the link; all other entries in the column are 0 (suppressed in the figure). The right side of the system of equations is written in a somewhat analogous manner: all influxes into the network are entered with a minus sign, all effluxes with a plus sign; all other entries are 0.

17-2 Micro Behaviour

In disaggregating the flows of funds we desire to break down book-keeping entities into concepts that can be related to the planning and decision-making of behavioural units. In this section we outline a prototype set of possible assumptions of underlying micro theory:

Behaviour of intermediaries

For each intermediary a small portfolio model of linear programming type is assumed. Figure 17:3 shows some fundamental sample relations for three LP formulations, one for each intermediary,

The portfolio model for savings and loan associations (insurance companies) is shown on lines (1) to (4) and (11). Given a certain expected inflow of savings capital (line 11), the associations are assumed to face the problem of allocating their assets optimally between high-liquid low-yield demand deposits with banks and low-liquid high-yield real estate loans to households and business. The sample constraints include a budget relation (line 2), a condition on minimum liquidity (line 3), and a condition on maximum lending risk (line 4).

The portfolio model for commercial banks is shown on lines (1), (5) to (7), (12) and (13). Given a certain expected inflow of deposits into the banks (lines 12 and 13), the banks are assumed to face the problem of allocating their remaining assets optimally between reserves, term loans to household finance companies, and business loans. The sample constraints include a budget relation (line 5), a condition on minimum liquidity (line 6), and a condition on maximum lending risk (line 7). The reserves consist of required reserves and excess reserves. The bank is assumed to want to hold excess reserves as a protection against deposit risk.

Finally, the portfolio model for household finance companies is shown on lines (1), (8) to (10) and (14). Given a certain expected availability of term loans that can be raised from banks (line 14), the household finance companies face the problem of making an optimal decision on the amount of household loans that they want to grant. Their cash holding has the nature of a reserve; it provides a cash buffer which can be drawn upon to meet variability in the demand for household loans.
<table>
<thead>
<tr>
<th></th>
<th>Savings and loan associations (insurance companies)</th>
<th>Commercial banks</th>
<th>Household finance companies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bank deposits</td>
<td>Term loans to HF</td>
<td>Deposits of SL</td>
</tr>
<tr>
<td></td>
<td>Real estate loans</td>
<td>Loans to enterprises</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shares (accrued reserves)</td>
<td>Deposits of SL</td>
<td>Cash</td>
</tr>
<tr>
<td>1 Profit</td>
<td>+4</td>
<td>+3</td>
<td>+4</td>
</tr>
<tr>
<td>Divisional constraints</td>
<td>+8</td>
<td>+5</td>
<td>-4</td>
</tr>
<tr>
<td>2</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>+0.10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>+1</td>
<td>-1</td>
<td>+0.15 +0.20</td>
</tr>
<tr>
<td>5</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>6</td>
<td>-1</td>
<td>+1</td>
<td>-1.5 +1</td>
</tr>
<tr>
<td>7</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>8</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>9</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>10</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>11</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>12</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>13</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>14</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
</tbody>
</table>

Figure 17:3 Linear-programming formulations for three intermediaries

The minimum liquidity protection is specified (line 9), as is the maximum lend risk (line 10).

Behaviour of ultimate units

The propensity of ultimate units to hold assets is assumed to be related to manner in which the available finance was raised. More specifically, each do which flows into the portfolio of ultimate units is assumed to be allocated unique and characteristic proportions. Constant coefficients of *feed-back* to network of flows of funds as renewed financial saving are assumed as shown Figure 17:4.
One additional dollar of finance raised by ultimate units in the form of...

<table>
<thead>
<tr>
<th></th>
<th>As cash</th>
<th>As bank deposits</th>
<th>As savings in and loan association (insurance companies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Household loans</td>
<td>0.09</td>
<td>0.40</td>
<td>0.51</td>
</tr>
<tr>
<td>Business loans</td>
<td>0.09</td>
<td>0.76</td>
<td>0.15</td>
</tr>
<tr>
<td>Real estate loans</td>
<td>0.09</td>
<td>0.25</td>
<td>0.66</td>
</tr>
<tr>
<td>Private sector net worth (Government transfer *)</td>
<td>0.05</td>
<td>0.50</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Figure 17:4 Placement feedback ratios of ultimate units

*Note that in the present model private net worth = public debt = quantity of money

17-3 Dynamic Equilibrium

The prototype model outlined in the preceding section was constructed so that each variable (link in the network) is controlled by one and only one economic subject (one node). To the controlling unit this variable is a control variable. Seen from the point of view of any other unit it is a parameter of expectations.

Figure 17:5 illustrates by way of an arrow scheme (as in Tinbergen [15]) the logical structure of the model. Consider the two first columns of dots, denoting the values attached to links in period t, *ex ante* and *ex post* respectively. There are three systems of arrows in period t:

1. **The decision-making of savings and loan associations.** The control variables under the control of savings and loan associations are determined *ex post* on the basis of the relevant expectations (arrows from line (3) *ex ante* to lines (4) and (5) *ex post*).

2. **The decision-making of commercial banks.** The control variables are determined
Figure 17:5 Arrow scheme illustrating logical structure of dynamic equilibrium

ex post on the basis of relevant expectations (arrows from lines (2), (4) ex ante lines (6), (7) and (8) ex post).

3 The decision-making of household finance companies (arrows from line (7 ante to lines (9) and (10) ex post).

Note how the joint specification of all relevant expectations (filled ex ante does uniquely determines all ex post values.

Next consider the dynamic features of the model, i.e. the relationships between variables in periods t and (t + 1). The postulated behaviour of the ultimate sectors provides the dynamic feature of the model. In effect, the feedback ratio Figure 17:4 create a dynamic dependence of variables in one period on the va
attached to variables in the preceding period. Loans extended to the ultimate sectors in one period will feed back to the network as new placements of ultimate sectors in the subsequent period. The decision-making of the ultimate sectors in one period will depend upon the lending \textit{ex post} that was extended them during the past period (arrows from lines (1), (5), (8) and (10) in period t lines (2) and (3) in period $t + 1$).

It only remains to discuss the dynamic formation of expectations. A special case of dynamic models which has been studied extensively in the literature \textit{equilibrium}: all behaviour units make correct forecasts so that \textit{ex ante} will always coincide exactly with \textit{ex post}.\footnote{Other terms that have been used to describe such a situation is moving equilibrium, dynamic equilibrium, perfect foresight, etc. See Hayek [8].} This assumption introduces a recursive feature in the model. A given variable may be controlled by one subject; the expectation which other subjects may have formed concerning the outcome of this variable will then be determined (see stippled arrows orientated in reverse). The decision-making problem of these other subjects will then be well-defined and decisions on their control variables can then be taken, and so on.

Turning to the mathematical representation of our model, the equations (11) to (14) in Figure 17:3 which specify the determination of expectations must now be replaced by corresponding equations in Figure 17:6, i.e. equations (11a) to (14a) respectively. Note that equations (13a) and (14a) involve variables from more than one division at the same time. Thus these equations have the character of so-called ‘coupling constraints’.

We have now arrived at a set of interrelated mathematical programming problems. We have formulated three distinct LP problems, one for each division but they are coupled together via certain coupling conditions, which the solution to the three problems must simultaneously fulfil.

The concept of \textit{order} is important. We have assumed a certain recursive \textit{causal ordering} of the problem. In each period the following hierarchical ranking is introduced:

first: savings and loan associations
second: commercial banks
third: household finance companies

The divisions are assumed to optimise their behaviour in each period in this order and on the basis of full information about all earlier decision taken by division in this causal chain. Thus, first the SL associations will act and they will make their decisions for the period without paying notice to the coupling conditions at all. In this manner \textit{inter alia} their bank deposits in Figure 17:5 line (4) will be determined. The stage is then set for the commercial banks to go. To them the meaning of the coupling equation (13a) is now settled. Otherwise they will optimize their behaviour without regard to any other coupling constraints. The burden of obeying equation (14a) is shifted down along the hierarchy of causal ordering and over to
<table>
<thead>
<tr>
<th>Savings and loan associations (insurance companies)</th>
<th>Commercial banks</th>
<th>Household finance companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank deposits</td>
<td>Real estate loans</td>
<td>Shares (accrued reserves)</td>
</tr>
<tr>
<td>Reserves</td>
<td>Term loans to HF</td>
<td>Business loans</td>
</tr>
<tr>
<td>Deposits of ultimate sectors</td>
<td>Deposits of SL</td>
<td></td>
</tr>
<tr>
<td>Cash</td>
<td>Household loans</td>
<td>Term borrowing</td>
</tr>
</tbody>
</table>

(11a) +1
(12a) +1
(13a) -1
(14a) -1

\[\text{Determined by events in last period, see Fig 4}\]

\[= 0\]

Figure 17.6 Determination of expectations in equilibrium network

the household finance companies. In this manner term loans to the househ
finance companies in Figure 17:5 line (7) are determined. Finally, it is time for household finance companies to have their say. The coupling condition (14a now defined and they have to optimise their portfolio under the condition of given availability of term loans.

The assumptions of causal order [11] have the nature of extraneous or ad hoc information which has to be added to the system of mathematical programming formats in equations (1) to (10) and (11a) to (14a), in order to make e divisional problem well defined.

17-4 Imbedding and Decomposition

We shall now show how it is possible to imbed the three divisional problems insin larger master problem, and that the optimal solution to the master problem r coincide with the optimal solutions to the three divisional problems.

This situation is somewhat analogous to the one encountered in decomposition theory in mathematical programming [4, 5], except that we here start from divisional problems and then construct the master problem as an artifice solution.
In order to bring out the principles of imbedding, the problem is now presented with a more general notation. Let the master problem be

\[\begin{align*}
\text{Max} & \quad c_1 x_1 + c_2 x_2 + c_3 x_3 \\
\text{subject to} & \quad B_1 x_1 \leq b_1 \\
& \quad B_2 x_2 \leq b_2 \\
& \quad B_3 x_3 \leq b_3 \\
& \quad C_{11} x_1 + C_{12} x_2 = d_1 \\
& \quad C_{21} x_1 + C_{22} x_2 + C_{23} x_3 = d_2
\end{align*}\]

(M)

where \(x_1, x_2, x_3\) are the decision variables for the three divisional problems,

\((x_1, x_2, x_3 \geq 0)\)

In the terminology of decomposition theory the master problem or the global problem (M) encompasses three divisions \(i = 1, 2, 3\), and consists of three divisional constraints \(B_i x_i \leq b_i\) as well as coupling constraints (in the two last lines). The idea of decentralisation is connected with the splitting-up of problem (M) into three separate divisional problems, containing the divisional constraint. The problem of coherent decentralisation [2] is to determine such information which, when delegated to divisions, will cause them to arrive at solutions which together constitute an optimum solution to the global problem.

In our present application the situation is precisely the reverse. Three divisional problems are given, for savings and loan associations, for commercial banks and for household finance companies (Figure 17-3, lines 1-10). In addition, a set of couplings must be adhered to (Figure 17-6). By coherent imbedding one implies a procedure which allows the formulation of a corresponding master problem (M), which can be decomposed by coherent decentralisation into the original divisional problems.

If such an imbedding procedure can be found, the method of solution of the given set of divisional problems is as follows: (i) perform the imbedding, (ii) solve the master problem, (iii) the divisional parts of the master solution constitute optima to the divisional problems.

In ordinary decomposition theory the prices \(c_i\) of the master problem are taken as given and fixed; during the process of decomposition there may be a need to 'correct' these prices, so that when delegated to divisions they ensure coherent decentralisation.

In the present case we start from a micro situation and proceed to form a corresponding master problem. Consider the prices entered on line (1) in Figure 17:3. In any empirical application the prices to be used here are of course quoted market prices. No 'correction' has yet been undertaken. No guarantee can be given that coherent decentralisation can be ensured. We realise that in fact these prices do not belong to the divisional problems but to a corresponding master problem.

The three formulated micro problems must therefore be corrected. The prices must be corrected so that coherent action hopefully is ensured.
The procedure of delegation of information from the master problem divisional problems differs somewhat from the standard pattern in the literature; addition to delegating corrected prices we impose a hierarchal order. In our model the following causal train of delegation of information will followed in each period:

1. To the first division: delegate prices corrected for any couplings with second or the third division.
2. To the second division: delegate information about the first division's optimal choice, and delegate prices corrected for any additional couplings with the third division.
3. To the third division: delegate information about the optimal choices of the first and the second division.

We may write the dual to the master problem (M) as follows:

\[
\begin{align*}
\text{Min} & \quad u_1 b_1 + u_2 b_2 + u_3 b_3 + v_1 d_1 + v_2 d_2 \\
\text{subject to} & \quad u_1 B_1 + v_1 C_{11} + v_2 C_{21} \geq c_1 \\
& \quad u_2 B_2 + v_1 C_{12} + v_2 C_{22} \geq c_2 \\
& \quad u_3 B_3 + v_2 C_{23} \geq c_3
\end{align*}
\]

\[\text{(D)}\]

\[u_1, u_2, u_3 \geq 0\]

If we denote the optimal solution to (D) as \((\bar{u}_1, \bar{u}_2, \bar{u}_3, \bar{v}_1, \bar{v}_2)\), the divisional problem for division 1 (to be solved first) becomes:

\[
\begin{align*}
\text{Max} & \quad (c_1 - \bar{v}_1 C_{11} - \bar{v}_2 C_{21}) x_1 \\
\text{subject to} & \quad B_1 x_1 \leq b_1 \\
& \quad x_1 \geq 0
\end{align*}
\]

\[\text{(P1)}\]

For division 2 (to be solved after the solution \(x^*_{1}\) to the first division has been obtained), the problem becomes

\[
\begin{align*}
\text{Max} & \quad (c_2 - \bar{v}_2 C_{22}) x_2 \\
\text{subject to} & \quad B_2 x_2 \leq b_2 \\
& \quad C_{12} x_2 = d_1 - C_{11} x^*_{1} \\
& \quad x_2 \geq 0
\end{align*}
\]

\[\text{(P2)}\]

The problem (P3) for division 3 may be formulated similarly.

Our main result, the proof of which may be found in our 1970 TIMS conference paper, is then as follows. Denote the solution to the master problem \((\bar{x}_1, \bar{x}_2, \bar{x}_3)\)
Then assuming that \mathbf{x}_i is feasible for the divisional problem (P_i) for all i, it follows that \mathbf{x}_i are optimal solutions for the divisions.

Conversely, solve the divisional problems (P_i) and calculate the corresponding divisional duals (u_1^*, u_2^*, v_1^*), (u_3^*, v_2^*). Then if these duals together constitute a feasible solution to the master dual (D), it must follow that it is also optimal to D, and the solutions to the direct divisional problems constitute an optimal solution to the direct master problem (M).

17-5 Conditions for Convergence

So far we have studied a single time period. We are now ready to turn to the central problem of the paper, namely: what happens to the system as we move from period to period. This problem is already touched upon in the Tinbergen arrow diagram (Figure 17:5) and in the feedback matrix in Figure 17:4, where changes in the use of funds lead to changes in the assets of the ultimate sectors. It seems reasonable to assume that the changes take place with one period lag.

It can be argued that we have a mathematical programming problem for each period (i.e., a sequence of problems over the periods which have to be solved) and the question is whether the sequence converges towards an equilibrium.

Without going into mathematical detail, it should be clear that as long as there is no change of basis in the master problem (M) from one period to the next, the master solution can be obtained from a linear system of difference equations. The conditions for such a system to converge towards a stable solution can be easily expressed in the characteristic roots of the coefficient matrix $[1, 6, 9]$.

If the master problem (M) changes basis in some period, a sufficient condition for convergence is that both the old and the new systems of difference equations are stable.

Whereas the convergence of the simple textbook credit multiplier typically requires that the sum of all coefficients of 'leakage' (increased cash holdings by households and firms, and increased reserves by the intermediaries) be less than one3, we have here a much more complicated criterion, which does not immediately allow such a straightforward interpretation.

17-6 Numerical Example

The example is set up as follows:

1 Define first an initial situation of equilibrium. We have chosen the example displayed in Figure 17:1. The example was constructed by solving the programming model in Figure 17:3. For the expected placements of the ultimate sectors we put

3 See e.g. Sheppard and Barrett [10].
shares = 71.26 and deposits = 105.42. For the two remaining variables of equations we used equations (13a) and (14a). The initial figures just mentioned chosen so that the total initial money supply in the model would equal 25. that in this initial situation of equilibrium desired cash holdings equal actual holdings everywhere.

2 Introduce an injection of base money of amount 10 into the system instance in the form of the government issuing short-term debt placed in the central bank. We shall now observe how this 'pulse' is propagated through the system.

3 The injection reaches the private sector, and 5% 'leaks out' as increased holdings. 45% reaches the SL associations and 50% the commercial banks. Total deposits with these institutions are thus stepped up to

\[71.26 + 4.5 = 75.76 \]

and

\[105.42 + 5 = 110.42 \]

respectively.

4 This increased flow of funds into the financial institutions adds in the instance to their reserves. There will thus arise a discrepancy between their actual cash-holding and the desired level. This discrepancy is the actual drive of dynamic network. In order to find the adjustments of the financial institutions the first round, the right-hand sides of equations (11) and (12) are set equal to deposit levels computed above. The new solution is shown as period 1 in Figure 17:8.

5 Consider Figure 17:4. The loan increases affect deposits one period (shown in Figure 17:7 under 'period 1,' lines (5) and (6)). The deposits in associations and commercial banks are stepped up to:

\[75.76 + 3.91 = 79.66 \]
\[110.42 + 3.76 = 114.17 \]

respectively. We then change the right-hand sides of equations (11) and (12) to amounts above and solve. The new increases in the loans are shown in Figure 1 under 'period 2,' lines (1)–(3).

The dynamic pattern thus continues. In Figure 17:8 we show the solutions twenty periods and demonstrate how they converge.\(^4\) In the new equilibrium actual cash again equals desired cash. The economic subjects of the network now desire to hold thirty-five units of cash.

The numerical example is given in terms of the master problem format. We however correct the prices of the divisional problems and solve the problems in hierarchical order described earlier in the paper. The divisional solutions will ti

\(^4\) In period 4, real estate loans hit their upper limit and the master problem changes basis. solution to the master problem from then on enters a path of convergent growth. We have checked that the mathematical requirements for convergence are satisfied.
converge towards the same solution as in Figure 17:8. The corrected prices are found by using the dual variables for equations (13a) and (14a) in Figure 17:4. These are 0.0294 and 0.0283, respectively. We therefore correct the following prices:

Bank deposits: \[0.04 - (-1) \times 0.0294 = 0.0694 \]
Term loans to HF: \[0.05 - (-1) \times 0.0283 = 0.0783 \]

The remaining prices are unchanged.

17-7 Conclusion

A flow-of-funds table is a cross tabulation of sources of funds and uses of funds in the financial sector of the economy. A flow-of-funds network is a pictorial extension of this concept, showing explicitly the network of financial portfolio participating in the intermediation of funds, connecting ultimate suppliers and ultimate users of funds.

The flow-of-funds network offers a convenient format for the study of the propagation of credit expansion processes in commercial banks, savings banks and other financial intermediaries. In effect, such expansion processes develop as the result of interaction between ultimate suppliers and users of funds (shown as the sources and the sinks of the network) and the financial intermediaries (appearing as the nodes of the network). Just as the well-known textbook credit multiplier exists in the two versions, one static and one dynamic, similarly the more general flow-of-funds network processes can be thought of either in a static or a dynamic context. The dynamic version would arise when there are lags of behaviour either in the ultimate sectors, or the intermediaries, or both.

The present paper outlines a programming format, which can be employed to generate very general types of such dynamic processes of propagation of funds. In each period the mathematical program takes the form of a series of interconnected individual portfolio problems, one for each intermediary. It was shown that they could be imbedded in a corresponding master program of decomposition type, and a new decomposition procedure (called hierarchical decomposition) was introduced to obtain coherency between the master optimum and the individual (divisional) optima. Between periods a behaviour lag between funds raised and funds placed for ultimate sectors was introduced.

Under general conditions the dynamic process set up may converge. As long as the master problem in any one given application does not change basis, the process will behave as a system of linear difference equations. But if the master problem changes basis during the course of the credit expansion the path of the solution will move on to follow another set of such linear difference equations.

The dynamic flow-of-funds network can be viewed as an instance of dynamic portfolio process analysis. It provides a format for the study of causal sequences of the formation of expectations, of successive portfolio optimisations, and of the
<table>
<thead>
<tr>
<th>Item</th>
<th>Formula</th>
<th>Period 0</th>
<th>Period 1</th>
<th>Period 2</th>
<th>Period 3</th>
<th>Period 4</th>
<th>Period 5</th>
<th>Period 6</th>
<th>Period 7</th>
<th>Period 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Increase in household loans</td>
<td>-</td>
<td>1.60</td>
<td>1.22</td>
<td>0.97</td>
<td>1.35</td>
<td>1.07</td>
<td>0.77</td>
<td>0.55</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>2. Increase in business loans</td>
<td>-</td>
<td>2.77</td>
<td>2.10</td>
<td>1.67</td>
<td>2.33</td>
<td>1.84</td>
<td>1.32</td>
<td>0.95</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>3. Increase in real estate loans</td>
<td>-</td>
<td>4.05</td>
<td>3.52</td>
<td>2.93</td>
<td>0.37</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4. Increase in net worth</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5. Increase in bank deposits</td>
<td>$0.40 \times (1) + 0.76 \times (2) + 0.25 \times (3) + 0.50 \times (4)$</td>
<td>5</td>
<td>3.76</td>
<td>2.97</td>
<td>2.39</td>
<td>2.40</td>
<td>1.82</td>
<td>1.31</td>
<td>0.95</td>
<td>0.68</td>
</tr>
<tr>
<td>6. Increase in S & L shares</td>
<td>$0.51 \times (1) + 0.15 \times (2) + 0.66 \times (3) + 0.45 \times (4)$</td>
<td>4.5</td>
<td>3.91</td>
<td>3.26</td>
<td>2.68</td>
<td>1.28</td>
<td>0.82</td>
<td>0.59</td>
<td>0.42</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Figure 17:7 Propagation in successive time periods of an initial injection of cash into flow-of-funds network
<table>
<thead>
<tr>
<th></th>
<th>Initial solution</th>
<th>Period 1</th>
<th>Period 2</th>
<th>Period 3</th>
<th>Period 4</th>
<th>Period 5</th>
<th>Period 6</th>
<th>Period 7</th>
<th>Period 8</th>
<th>Period 20</th>
<th>Final solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>S & L association:</td>
<td></td>
</tr>
<tr>
<td>Bank deposits</td>
<td>7.13</td>
<td>7.58</td>
<td>7.97</td>
<td>8.29</td>
<td>10.60</td>
<td>11.88</td>
<td>12.70</td>
<td>13.29</td>
<td>14.02</td>
<td>...</td>
<td>14.78 ... 14.80</td>
</tr>
<tr>
<td>Real estate loans</td>
<td>64.13</td>
<td>68.18</td>
<td>71.70</td>
<td>74.63</td>
<td>75.00</td>
<td>75.00</td>
<td>75.00</td>
<td>75.00</td>
<td>75.00</td>
<td>...</td>
<td>75.00 ... 75.00</td>
</tr>
<tr>
<td>Shares</td>
<td>71.26</td>
<td>75.76</td>
<td>79.66</td>
<td>82.92</td>
<td>85.60</td>
<td>86.88</td>
<td>87.70</td>
<td>88.29</td>
<td>88.71</td>
<td>...</td>
<td>89.79 ... 89.80</td>
</tr>
<tr>
<td>Commercial banks:</td>
<td></td>
</tr>
<tr>
<td>Reserves</td>
<td>17.24</td>
<td>18.08</td>
<td>18.72</td>
<td>19.23</td>
<td>20.05</td>
<td>20.67</td>
<td>21.10</td>
<td>21.42</td>
<td>21.64</td>
<td>...</td>
<td>22.22 ... 22.23</td>
</tr>
<tr>
<td>Term loans to HF</td>
<td>8.12</td>
<td>9.97</td>
<td>11.37</td>
<td>12.48</td>
<td>14.03</td>
<td>15.26</td>
<td>16.14</td>
<td>16.77</td>
<td>17.23</td>
<td>...</td>
<td>18.38 ... 18.41</td>
</tr>
<tr>
<td>Business loans</td>
<td>87.12</td>
<td>89.95</td>
<td>92.05</td>
<td>93.72</td>
<td>96.05</td>
<td>97.89</td>
<td>99.21</td>
<td>100.16</td>
<td>100.85</td>
<td>...</td>
<td>102.57 ... 102.61</td>
</tr>
<tr>
<td>Deposits of ultimate sectors</td>
<td>105.42</td>
<td>110.42</td>
<td>114.17</td>
<td>117.14</td>
<td>119.53</td>
<td>121.93</td>
<td>123.75</td>
<td>125.06</td>
<td>126.01</td>
<td>...</td>
<td>128.39 ... 128.43</td>
</tr>
<tr>
<td>Deposits of S & L</td>
<td>7.13</td>
<td>7.58</td>
<td>7.97</td>
<td>8.29</td>
<td>10.60</td>
<td>11.88</td>
<td>12.70</td>
<td>13.29</td>
<td>13.71</td>
<td>...</td>
<td>14.78 ... 14.80</td>
</tr>
<tr>
<td>Household finance:</td>
<td></td>
</tr>
<tr>
<td>Cash</td>
<td>1.06</td>
<td>1.30</td>
<td>1.48</td>
<td>1.63</td>
<td>1.83</td>
<td>1.99</td>
<td>2.11</td>
<td>2.19</td>
<td>2.25</td>
<td>...</td>
<td>2.40 ... 2.40</td>
</tr>
<tr>
<td>Household loans</td>
<td>7.06</td>
<td>8.67</td>
<td>9.89</td>
<td>10.85</td>
<td>12.20</td>
<td>13.27</td>
<td>14.03</td>
<td>14.59</td>
<td>14.98</td>
<td>...</td>
<td>15.99 ... 16.01</td>
</tr>
<tr>
<td>Term borrowing</td>
<td>8.12</td>
<td>9.97</td>
<td>11.37</td>
<td>12.48</td>
<td>14.03</td>
<td>15.26</td>
<td>16.14</td>
<td>16.78</td>
<td>17.23</td>
<td>...</td>
<td>18.38 ... 18.41</td>
</tr>
</tbody>
</table>

Figure 17:8 Dynamic solution of flow-of-funds network
propagation of monetary pulses from one portfolio to another. There seems to be scope for considerable further developments in this direction. If lags and delays in portfolio responses are indeed essential features of the working of monetary financial mechanisms, such extensions should add to our knowledge of the economic world.

17-6 References

10 Sheppard, D and Barrett, C: 'Financial Credit Multipliers and Availability of Funds,' *Econometrica*, May 1965.
13 Thore, S: 'Linked Portfolios in Credit Networks,' presented at the OFI meeting Miami Beach, November 1969.
14 Thore, S: 'Programming a Credit Network under Uncertainty,' *Journal of Money, Credit and Banking*, May 1970.